Jump to content

Phylum

From Wikipedia, the free encyclopedia
(Redirected from Superphyla)

LifeDomainKingdomPhylumClassOrderFamilyGenusSpecies
The hierarchy of biological classification's eight major taxonomic ranks. A kingdom contains one or more phyla. Intermediate minor rankings are not shown.

In biology, a phylum (/ˈfləm/; pl.: phyla) is a level of classification or taxonomic rank below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent.[1][2][3] Depending on definitions, the animal kingdom Animalia contains about 31 phyla, the plant kingdom Plantae contains about 14 phyla, and the fungus kingdom Fungi contains about eight phyla. Current research in phylogenetics is uncovering the relationships among phyla within larger clades like Ecdysozoa and Embryophyta.

General description

[edit]

The term phylum was coined in 1866 by Ernst Haeckel from the Greek phylon (φῦλον, "race, stock"), related to phyle (φυλή, "tribe, clan").[4][5] Haeckel noted that species constantly evolved into new species that seemed to retain few consistent features among themselves and therefore few features that distinguished them as a group ("a self-contained unity"): "perhaps such a real and completely self-contained unity is the aggregate of all species which have gradually evolved from one and the same common original form, as, for example, all vertebrates. We name this aggregate [a] Stamm [i.e., stock / tribe] (Phylon)."[a] In plant taxonomy, August W. Eichler (1883) classified plants into five groups named divisions, a term that remains in use today for groups of plants, algae and fungi.[1][6] The definitions of zoological phyla have changed from their origins in the six Linnaean classes and the four embranchements of Georges Cuvier.[7]

Informally, phyla can be thought of as groupings of organisms based on general specialization of body plan.[8] At its most basic, a phylum can be defined in two ways: as a group of organisms with a certain degree of morphological or developmental similarity (the phenetic definition), or a group of organisms with a certain degree of evolutionary relatedness (the phylogenetic definition).[9] Attempting to define a level of the Linnean hierarchy without referring to (evolutionary) relatedness is unsatisfactory, but a phenetic definition is useful when addressing questions of a morphological nature—such as how successful different body plans were.[citation needed]

Definition based on genetic relation

[edit]

The most important objective measure in the above definitions is the "certain degree" that defines how different organisms need to be members of different phyla. The minimal requirement is that all organisms in a phylum should be clearly more closely related to one another than to any other group.[9] Even this is problematic because the requirement depends on knowledge of organisms' relationships: as more data become available, particularly from molecular studies, we are better able to determine the relationships between groups. So phyla can be merged or split if it becomes apparent that they are related to one another or not. For example, the bearded worms were described as a new phylum (the Pogonophora) in the middle of the 20th century, but molecular work almost half a century later found them to be a group of annelids, so the phyla were merged (the bearded worms are now an annelid family).[10] On the other hand, the highly parasitic phylum Mesozoa was divided into two phyla (Orthonectida and Rhombozoa) when it was discovered the Orthonectida are probably deuterostomes and the Rhombozoa protostomes.[11]

This changeability of phyla has led some biologists to call for the concept of a phylum to be abandoned in favour of placing taxa in clades without any formal ranking of group size.[9]

Definition based on body plan

[edit]

A definition of a phylum based on body plan has been proposed by paleontologists Graham Budd and Sören Jensen (as Haeckel had done a century earlier). The definition was posited because extinct organisms are hardest to classify: they can be offshoots that diverged from a phylum's line before the characters that define the modern phylum were all acquired. By Budd and Jensen's definition, a phylum is defined by a set of characters shared by all its living representatives.

This approach brings some small problems—for instance, ancestral characters common to most members of a phylum may have been lost by some members. Also, this definition is based on an arbitrary point of time: the present. However, as it is character based, it is easy to apply to the fossil record. A greater problem is that it relies on a subjective decision about which groups of organisms should be considered as phyla.

The approach is useful because it makes it easy to classify extinct organisms as "stem groups" to the phyla with which they bear the most resemblance, based only on the taxonomically important similarities.[9] However, proving that a fossil belongs to the crown group of a phylum is difficult, as it must display a character unique to a sub-set of the crown group.[9] Furthermore, organisms in the stem group of a phylum can possess the "body plan" of the phylum without all the characteristics necessary to fall within it. This weakens the idea that each of the phyla represents a distinct body plan.[12]

A classification using this definition may be strongly affected by the chance survival of rare groups, which can make a phylum much more diverse than it would be otherwise.[13]

Known phyla

[edit]

Animals

[edit]

Total numbers are estimates; figures from different authors vary wildly, not least because some are based on described species,[14] some on extrapolations to numbers of undescribed species. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million.[15]

Protostome Bilateria Nephrozoa
Deuterostome
Basal/disputed Non-Bilateria
Vendobionta
Parazoa
Others
Phylum Meaning Common name Distinguishing characteristic Taxa described
Agmata Fragmented Calcareous conical shells 5 species, extinct
Annelida Little ring [16]: 306  Segmented worms, annelids Multiple circular segments 22,000+ extant
Arthropoda Jointed foot Arthropods Segmented bodies and jointed limbs, with Chitin exoskeleton 1,250,000+ extant;[14] 20,000+ extinct
Brachiopoda Arm foot[16]: 336  Lampshells[16]: 336  Lophophore and pedicle 300–500 extant; 12,000+ extinct
Bryozoa (Ectoprocta) Moss animals Moss animals, sea mats, ectoprocts[16]: 332  Lophophore, no pedicle, ciliated tentacles, anus outside ring of cilia 6,000 extant[14]
Chaetognatha Longhair jaw Arrow worms[16]: 342  Chitinous spines either side of head, fins approx. 100 extant
Chordata With a cord Chordates Hollow dorsal nerve cord, notochord, pharyngeal slits, endostyle, post-anal tail approx. 55,000+[14]
Cnidaria Stinging nettle Cnidarians Nematocysts (stinging cells) approx. 16,000[14]
Ctenophora Comb bearer Comb jellies[16]: 256  Eight "comb rows" of fused cilia approx. 100–150 extant
Cycliophora Wheel carrying Circular mouth surrounded by small cilia, sac-like bodies 3+
Echinodermata Spiny skin Echinoderms[16]: 348  Fivefold radial symmetry in living forms, mesodermal calcified spines approx. 7,500 extant;[14] approx. 13,000 extinct
Entoprocta Inside anus[16]: 292  Goblet worms Anus inside ring of cilia approx. 150
Gastrotricha Hairy stomach[16]: 288  Hairybellies Two terminal adhesive tubes approx. 690
Gnathostomulida Jaw orifice Jaw worms[16]: 260  Tiny worms related to rotifers with no body cavity approx. 100
Hemichordata Half cord[16]: 344  Acorn worms, hemichordates Stomochord in collar, pharyngeal slits approx. 130 extant
Kinorhyncha Motion snout Mud dragons Eleven segments, each with a dorsal plate approx. 150
Loricifera Armour bearer Brush heads Umbrella-like scales at each end approx. 122
Micrognathozoa Tiny jaw animals Accordion-like extensible thorax 1
Mollusca Soft[16]: 320  Mollusks/molluscs Muscular foot and mantle round shell 85,000+ extant;[14] 80,000+ extinct[17]
Monoblastozoa
(Nomen inquirendum)
One sprout animals distinct anterior/posterior parts and being densely ciliated, especially around the "mouth" and "anus". 1
Nematoda Thread like Roundworms, threadworms, eelworms, nematodes[16]: 274  Round cross section, keratin cuticle 25,000[14]
Nematomorpha Thread form[16]: 276  Horsehair worms, Gordian worms[16]: 276  Long, thin parasitic worms closely related to nematodes approx. 320
Nemertea A sea nymph[16]: 270  Ribbon worms[16]: 270  Unsegmented worms, with a proboscis housed in a cavity derived from the coelom called the rhynchocoel approx. 1,200
Onychophora Claw bearer Velvet worms[16]: 328  Worm-like animal with legs tipped by chitinous claws approx. 200 extant
Orthonectida Straight swimmer Parasitic, microscopic, simple, wormlike organisms 20
Petalonamae Shaped like leaves An extinct phylum from the Ediacaran. They are bottom-dwelling and immobile, shaped like leaves (frondomorphs), feathers or spindles. 3 classes, extinct
Phoronida Zeus's mistress Horseshoe worms U-shaped gut 11
Placozoa Plate animals Trichoplaxes, placozoans[16]: 242  Differentiated top and bottom surfaces, two ciliated cell layers, amoeboid fiber cells in between 4+
Platyhelminthes Flat worm[16]: 262  Flatworms[16]: 262  Flattened worms with no body cavity. Many are parasitic. approx. 29,500[14]
Porifera Pore bearer Sponges[16]: 246  Perforated interior wall, simplest of all known animals 10,800 extant[14]
Priapulida Little Priapus Penis worms Penis-shaped worms approx. 20
Proarticulata Before articulates An extinct group of mattress-like organisms that display "glide symmetry." Found during the Ediacaran. 3 classes, extinct
Dicyemida Lozenge animal Single anteroposterior axial celled endoparasites, surrounded by ciliated cells 100+
Rotifera Wheel bearer Rotifers[16]: 282  Anterior crown of cilia approx. 3,500[14]
Saccorhytida Saccus : "pocket" and "wrinkle" Saccorhytus is only about 1 mm (1.3 mm) in size and is characterized by a spherical or hemispherical body with a prominent mouth. Its body is covered by a thick but flexible cuticle. It has a nodule above its mouth. Around its body are 8 openings in a truncated cone with radial folds. Considered to be a deuterostome[18] or an early ecdysozoan.[19] 2 species, extinct
Tardigrada Slow step Water bears, moss piglets Microscopic relatives of the arthropods, with a four segmented body and head 1,000
Trilobozoa Three-lobed animal Trilobozoans A taxon of mostly discoidal organisms exhibiting tricentric symmetry. All are Ediacaran-aged 18 genera, extinct
Vetulicolia Ancient dweller Vetulicolians Might possibly be a subphylum of the chordates. Their body consists of two parts: a large front part and covered with a large "mouth" and a hundred round objects on each side that have been interpreted as gills or openings near the pharynx. Their posterior pharynx consists of 7 segments. 15 species, extinct
Xenacoelomorpha Strange hollow form Xenacoelomorphs Small, simple animals. Bilaterian, but lacking typical bilaterian structures such as gut cavities, anuses, and circulatory systems[20] 400+
Total: 39 1,525,000[14]

Plants

[edit]

The kingdom Plantae is defined in various ways by different biologists (see Current definitions of Plantae). All definitions include the living embryophytes (land plants), to which may be added the two green algae divisions, Chlorophyta and Charophyta, to form the clade Viridiplantae. The table below follows the influential (though contentious) Cavalier-Smith system in equating "Plantae" with Archaeplastida,[21] a group containing Viridiplantae and the algal Rhodophyta and Glaucophyta divisions.

The definition and classification of plants at the division level also varies from source to source, and has changed progressively in recent years. Thus some sources place horsetails in division Arthrophyta and ferns in division Monilophyta,[22] while others place them both in Monilophyta, as shown below. The division Pinophyta may be used for all gymnosperms (i.e. including cycads, ginkgos and gnetophytes),[23] or for conifers alone as below.

Since the first publication of the APG system in 1998, which proposed a classification of angiosperms up to the level of orders, many sources have preferred to treat ranks higher than orders as informal clades. Where formal ranks have been provided, the traditional divisions listed below have been reduced to a very much lower level, e.g. subclasses.[24]

Land plants Viridiplantae
Green algae
Other algae (Biliphyta)[21]
Division Meaning Common name Distinguishing characteristics Species described
Anthocerotophyta[25] Anthoceros-like plants Hornworts Horn-shaped sporophytes, no vascular system 100–300+
Bryophyta[25] Bryum-like plants, moss plants Mosses Persistent unbranched sporophytes, no vascular system approx. 12,000
Charophyta Chara-like plants Charophytes approx. 1,000
Chlorophyta (Yellow-)green plants[16]: 200  Chlorophytes approx. 7,000
Cycadophyta[26] Cycas-like plants, palm-like plants Cycads Seeds, crown of compound leaves approx. 100–200
Ginkgophyta[27] Ginkgo-like plants Ginkgophytes Seeds not protected by fruit only 1 extant; 50+ extinct
Glaucophyta Blue-green plants Glaucophytes 15
Gnetophyta[28] Gnetum-like plants Gnetophytes Seeds and woody vascular system with vessels approx. 70
Lycophyta[29] Lycopodium-like plants

Wolf plants

Clubmosses Microphyll leaves, vascular system 1,290 extant
Angiospermae Seed container Flowering plants, angiosperms Flowers and fruit, vascular system with vessels 300,000
Marchantiophyta,[30]

Hepatophyta[25]

Marchantia-like plants

Liver plants

Liverworts Ephemeral unbranched sporophytes, no vascular system approx. 9,000
Polypodiophyta Polypodium-like plants
Ferns Megaphyll leaves, vascular system approx. 10,560
Picozoa Extremely small animals Picozoans, picobiliphytes 1
Pinophyta,[23]

Coniferophyta[31]

Pinus-like plants

Cone-bearing plant

Conifers Cones containing seeds and wood composed of tracheids 629 extant
Prasinodermophyta Prasinoderma-like plants Picozoans, picobiliphytes, biliphytes 8
Rhodophyta Rose plants Red algae Use phycobiliproteins as accessory pigments. approx. 7,000
Total: 14

Fungi

[edit]
Division Meaning Common name Distinguishing characteristics Species described
Ascomycota Bladder fungus[16]: 396  Ascomycetes,[16]: 396  sac fungi Tend to have fruiting bodies (ascocarp).[32] Filamentous, producing hyphae separated by septa. Can reproduce asexually.[33] 30,000
Basidiomycota Small base fungus[16]: 402  Basidiomycetes,[16]: 402  club fungi Bracket fungi, toadstools, smuts and rust. Sexual reproduction.[34] 31,515
Blastocladiomycota Offshoot branch fungus[35] Blastoclads Less than 200
Chytridiomycota Little cooking pot fungus[36] Chytrids Predominantly Aquatic saprotrophic or parasitic. Have a posterior flagellum. Tend to be single celled but can also be multicellular.[37][38][39] 1000+
Glomeromycota Ball of yarn fungus[16]: 394  Glomeromycetes, AM fungi[16]: 394  Mainly arbuscular mycorrhizae present, terrestrial with a small presence on wetlands. Reproduction is asexual but requires plant roots.[34] 284
Microsporidia Small seeds[40] Microsporans[16]: 390  1400
Neocallimastigomycota New beautiful whip fungus[41] Neocallimastigomycetes Predominantly located in digestive tract of herbivorous animals. Anaerobic, terrestrial and aquatic.[42] approx. 20 [43]
Zygomycota Pair fungus[16]: 392  Zygomycetes[16]: 392  Most are saprobes and reproduce sexually and asexually.[42] approx. 1060
Total: 8

Phylum Microsporidia is generally included in kingdom Fungi, though its exact relations remain uncertain,[44] and it is considered a protozoan by the International Society of Protistologists[45] (see Protista, below). Molecular analysis of Zygomycota has found it to be polyphyletic (its members do not share an immediate ancestor),[46] which is considered undesirable by many biologists. Accordingly, there is a proposal to abolish the Zygomycota phylum. Its members would be divided between phylum Glomeromycota and four new subphyla incertae sedis (of uncertain placement): Entomophthoromycotina, Kickxellomycotina, Mucoromycotina, and Zoopagomycotina.[44]

Protists

[edit]

Kingdom Protista (or Protoctista) is included in the traditional five- or six-kingdom model, where it can be defined as containing all eukaryotes that are not plants, animals, or fungi.[16]: 120  Protista is a paraphyletic taxon,[47] which is less acceptable to present-day biologists than in the past. Proposals have been made to divide it among several new kingdoms, such as Protozoa and Chromista in the Cavalier-Smith system.[48]

Protist taxonomy has long been unstable,[49] with different approaches and definitions resulting in many competing classification schemes. Many of the phyla listed below are used by the Catalogue of Life,[50] and correspond to the Protozoa-Chromista scheme,[45] with updates from the latest (2022) publication by Cavalier-Smith.[51] Other phyla are used commonly by other authors, and are adapted from the system used by the International Society of Protistologists (ISP). Some of the descriptions are based on the 2019 revision of eukaryotes by the ISP.[52]

Stramenopiles "Chromista"
Alveolata
Rhizaria
"Hacrobia"
"Sarcomastigota" "Protozoa"
"Excavata"
Orphan groups
Phylum Meaning Common name Distinguishing characteristics Species described Image
Amoebozoa Amorphous animals Amoebozoans Presence of pseudopodia for amoeboid movement, tubular cristae.[52] approx. 2,400[53]
Apicomplexa Apical infolds[54] Apicomplexans, sporozoans Mostly parasitic, at least one stage of the life cycle with flattened subpellicular vesicles and a complete apical complex, non-photosynthetic apicoplast.[52] over 6,000[54]
Apusozoa
(paraphyletic)
Apusomonas-like animals Gliding biciliates with two or three connectors between centrioles 32
Bigyra Two rings Stramenopiles with a double helix in ciliary transition zone
Cercozoa Flagellated animal Cercozoans Defined by molecular phylogeny, lacking distinctive morphological or behavioural characters.[52]
Chromerida Chromera-like organisms Chrompodellids, chromerids, colpodellids[55] Biflagellates, chloroplasts with four membranes, incomplete apical complex, cortical alveoli, tubular cristae.[52] 8[56]
Choanozoa
(paraphyletic)
Funnel animals[16] Opisthokont protists Filose pseudopods; some with a colar of microvilli surrounding a flagellum approx. 300[53]
Ciliophora Cilia bearers Ciliates Presence of multiple cilia and a cytostome. approx. 4,500[57]
Cryptista Hidden[16] Defined by molecular phylogeny, flat cristae.[52] 246[56][52]
Dinoflagellata Whirling flagellates[16] Dinoflagellates Biflagellates with a transverse ribbon-like flagellum with multiple waves beating to the cell’s left and a longitudinal flagellum beating posteriorly with only one or few waves.[52] 2,957 extant
955 fossil[56]
Endomyxa Within mucus[16][58] Defined by molecular phylogeny,[52] typically plasmodial endoparasites of other eukaryotes.[58]
Eolouka
(paraphyletic)
Early groove[59] Heterotrophic biflagellates with ventral feeding groove.[59] 23
Euglenozoa True eye animals Biflagellates, one of the two cilia inserted into an apical or subapical pocket, unique ciliary configuration.[52] 2,037 extant
20 fossil[56]
Ochrophyta,
Heterokontophyta
Ochre plants, heterokont plants Heterokont algae, stramenochromes, ochrophytes, heterokontophytes Biflagellates with tripartite mastigonemes, chloroplasts with four membranes and chlorophylls a and c, tubular cristae.[52] 21,052 extant
2,262 fossil[56]
Haptista Fasten[16] Thin microtubule-based appendages for feeding (haptonema in haptophytes, axopodia in centrohelids), complex mineralized scales.[52] 517 extant
1,205 fossil[56]
Hemimastigophora Incomplete or atypical flagellates[60] Hemimastigotes[61] Ellipsoid or vermiform phagotrophs, two slightly spiraling rows of around 12 cilia each, thecal plates below the membrane supported by microtubules and rotationally symmetrical, tubular and saccular cristae.[52][60] 10[62]
Malawimonada Malawimonas-like organisms Malawimonads Small free-living bicilates with two kinetosomes, one or two vanes in posterior cilium. 3[63]
Metamonada Middle monads Metamonads Anaerobic or microaerophilic, some without mitochondria; four kinetosomes per kinetid
Opisthosporidia
(often considered fungi)
Opisthokont spores[64] Parasites with chitinous spores and extrusive host-invasion apparatus
Percolozoa Percolomonas-like animals Complex life cycle containing amoebae, flagellates and cysts.[52]
Perkinsozoa Perkinsus-like animals Perkinsozoans, perkinsids Parasitic biflagellates, incomplete apical complex, formation of zoosporangia or undifferentiated cells via a hypha-like tube.[52] 26
Provora Devouring voracious protists[65] Defined by molecular phylogeny, free-living eukaryovorous heterotrophic biflagellates with ventral groove and extrusomes.[65] 7[65]
Pseudofungi False fungi Defined by molecular phylogeny, phagotrophic heterokonts with a helical ciliary transition zone.[66] over 1,200[67]
Retaria Reticulopodia-bearing organisms[58] Feeding by reticulopodia (or axopodia) typically projected through various types of skeleton, closed mitosis.[68] 10,000 extant
50,000 fossil
Sulcozoa
(paraphyletic)
Groove-bearing animals[59] Aerobic flagellates (none, 1, 2 or 4 flagella) with dorsal semi-rigid pellicle of one or two submembrane dense layers, ventral feeding groove, branching ventral pseudopodia, typically filose.[59] 40+
Telonemia Telonema-like organisms[69] Telonemids[70] Phagotrophic pyriform biflagellates with a unique complex cytoskeleton, tubular cristae, tripartite mastigonemes, cortical alveoli.[69][70] 7
Total: 26, but see below.

The number of protist phyla varies greatly from one classification to the next. The Catalogue of Life includes Rhodophyta and Glaucophyta in kingdom Plantae,[50] but other systems consider these phyla part of Protista.[71] In addition, less popular classification schemes unite Ochrophyta and Pseudofungi under one phylum, Gyrista, and all alveolates except ciliates in one phylum Myzozoa, later lowered in rank and included in a paraphyletic phylum Miozoa.[51] Even within a phylum, other phylum-level ranks appear, such as the case of Bacillariophyta (diatoms) within Ochrophyta. These differences became irrelevant after the adoption of a cladistic approach by the ISP, where taxonomic ranks are excluded from the classifications after being considered superfluous and unstable. Many authors prefer this usage, which lead to the Chromista-Protozoa scheme becoming obsolete.[52]

Bacteria

[edit]

Currently there are 41 bacterial phyla (not including "Cyanobacteria") that have been validly published according to the Bacteriological Code[72]

  1. Abditibacteriota
  2. Acidobacteriota, phenotypically diverse and mostly uncultured
  3. Actinomycetota, High-G+C Gram positive species
  4. Aquificota, deep-branching
  5. Armatimonadota
  6. Atribacterota
  7. Bacillota, Low-G+C Gram positive species, such as the spore-formers Bacilli (aerobic) and Clostridia (anaerobic)
  8. Bacteroidota
  9. Balneolota
  10. Bdellovibrionota
  11. Caldisericota, formerly candidate division OP5, Caldisericum exile is the sole representative
  12. Calditrichota
  13. Campylobacterota
  14. Chlamydiota
  15. Chlorobiota, green sulphur bacteria
  16. Chloroflexota, green non-sulphur bacteria
  17. Chrysiogenota, only 3 genera (Chrysiogenes arsenatis, Desulfurispira natronophila, Desulfurispirillum alkaliphilum)
  18. Coprothermobacterota
  19. Deferribacterota
  20. Deinococcota, Deinococcus radiodurans and Thermus aquaticus are "commonly known" species of this phyla
  21. Dictyoglomota
  22. Elusimicrobiota, formerly candidate division Thermite Group 1
  23. Fibrobacterota
  24. Fusobacteriota
  25. Gemmatimonadota
  26. Ignavibacteriota
  27. Kiritimatiellota
  28. Lentisphaerota, formerly clade VadinBE97
  29. Mycoplasmatota, notable genus: Mycoplasma
  30. Myxococcota
  31. Nitrospinota
  32. Nitrospirota
  33. Planctomycetota
  34. Pseudomonadota, the most well-known phylum, containing species such as Escherichia coli or Pseudomonas aeruginosa
  35. Rhodothermota
  36. Spirochaetota, species include Borrelia burgdorferi, which causes Lyme disease
  37. Synergistota
  38. Thermodesulfobacteriota
  39. Thermomicrobiota
  40. Thermotogota, deep-branching
  41. Verrucomicrobiota

Archaea

[edit]

Currently there are 2 phyla that have been validly published according to the Bacteriological Code[72]

  1. Nitrososphaerota
  2. Thermoproteota, second most common archaeal phylum

Other phyla that have been proposed, but not validly named, include:

  1. "Euryarchaeota", most common archaeal phylum
  2. "Korarchaeota"
  3. "Nanoarchaeota", ultra-small symbiotes, single known species

See also

[edit]

Notes

[edit]
  1. ^ "Wohl aber ist eine solche reale und vollkommen abgeschlossene Einheit die Summe aller Species, welche aus einer und derselben gemeinschaftlichen Stammform allmählig sich entwickelt haben, wie z. B. alle Wirbelthiere. Diese Summe nennen wir Stamm (Phylon)."

References

[edit]
  1. ^ a b McNeill, J.; et al., eds. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 (electronic ed.). International Association for Plant Taxonomy. Archived from the original on 10 October 2020. Retrieved 14 May 2017.
  2. ^ "Life sciences". The American Heritage New Dictionary of Cultural Literacy (third ed.). Houghton Mifflin Company. 2005. Retrieved 4 October 2008. Phyla in the plant kingdom are frequently called divisions.
  3. ^ Berg, Linda R. (2 March 2007). Introductory Botany: Plants, People, and the Environment (2 ed.). Cengage Learning. p. 15. ISBN 9780534466695. Retrieved 23 July 2012.
  4. ^ Valentine 2004, p. 8.
  5. ^ Haeckel, Ernst (1866). Generelle Morphologie der Organismen [The General Morphology of Organisms] (in German). Vol. 1. Berlin, (Germany): G. Reimer. pp. 28–29.
  6. ^ Naik, V. N. (1984). Taxonomy of Angiosperms. Tata McGraw-Hill. p. 27. ISBN 9780074517888.
  7. ^ Collins AG, Valentine JW (2001). "Defining phyla: evolutionary pathways to metazoan body plans". Evolution and Development. 3: 432–442. Archived from the original (PDF) on 27 April 2020. Retrieved 5 March 2013.
  8. ^ Valentine, James W. (2004). On the Origin of Phyla. Chicago: University of Chicago Press. p. 7. ISBN 978-0-226-84548-7. Classifications of organisms in hierarchical systems were in use by the seventeenth and eighteenth centuries. Usually, organisms were grouped according to their morphological similarities as perceived by those early workers, and those groups were then grouped according to their similarities, and so on, to form a hierarchy.
  9. ^ a b c d e Budd, G. E.; Jensen, S. (May 2000). "A critical reappraisal of the fossil record of the bilaterian phyla". Biological Reviews. 75 (2): 253–295. doi:10.1111/j.1469-185X.1999.tb00046.x. PMID 10881389. S2CID 39772232. Archived from the original on 15 September 2019. Retrieved 26 May 2007.
  10. ^ Rouse, G. W. (2001). "A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera". Zoological Journal of the Linnean Society. 132 (1): 55–80. doi:10.1006/zjls.2000.0263.
  11. ^ Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wüest J, Zaninetti L (October 1996). "Origin of the Mesozoa inferred from 18S rRNA gene sequences". Molecular Biology and Evolution. 13 (8): 1128–32. doi:10.1093/oxfordjournals.molbev.a025675. PMID 8865666.
  12. ^ Budd, G. E. (September 1998). "Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle". Lethaia. 31 (3): 197–210. doi:10.1111/j.1502-3931.1998.tb00508.x.
  13. ^ Briggs, D. E. G.; Fortey, R. A. (2005). "Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation". Paleobiology. 31 (2 (Suppl)): 94–112. doi:10.1666/0094-8373(2005)031[0094:WSSSGA]2.0.CO;2. S2CID 44066226.
  14. ^ a b c d e f g h i j k l Zhang, Zhi-Qiang (30 August 2013). "Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)". Zootaxa. 3703 (1): 5. doi:10.11646/zootaxa.3703.1.3.
  15. ^ Felder, Darryl L.; Camp, David K. (2009). Gulf of Mexico Origin, Waters, and Biota: Biodiversity. Texas A&M University Press. p. 1111. ISBN 978-1-60344-269-5.
  16. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am Margulis, Lynn; Chapman, Michael J. (2009). Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth (4th corrected ed.). London: Academic Press. ISBN 9780123736215.
  17. ^ Feldkamp, S. (2002) Modern Biology. Holt, Rinehart, and Winston, USA. (pp. 725)
  18. ^ Han, Jian; Morris, Simon Conway; Ou, Qiang; Shu, Degan; Huang, Hai (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. Bibcode:2017Natur.542..228H. doi:10.1038/nature21072. ISSN 1476-4687. PMID 28135722. S2CID 353780.
  19. ^ Liu, Yunhuan; Carlisle, Emily; Zhang, Huaqiao; Yang, Ben; Steiner, Michael; Shao, Tiequan; Duan, Baichuan; Marone, Federica; Xiao, Shuhai; Donoghue, Philip C. J. (17 August 2022). "Saccorhytus is an early ecdysozoan and not the earliest deuterostome". Nature. 609 (7927): 541–546. Bibcode:2022Natur.609..541L. doi:10.1038/s41586-022-05107-z. hdl:1983/454e7bec-4cd4-4121-933e-abeab69e96c1. ISSN 1476-4687. PMID 35978194. S2CID 251646316.
  20. ^ Cannon, J.T.; Vellutini, B.C.; Smith, J.; Ronquist, F.; Jondelius, U.; Hejnol, A. (4 February 2016). "Xenacoelomorpha is the sister group to Nephrozoa". Nature. 530 (7588): 89–93. Bibcode:2016Natur.530...89C. doi:10.1038/nature16520. PMID 26842059. S2CID 205247296.
  21. ^ a b Cavalier-Smith, Thomas (22 June 2004). "Only Six Kingdoms of Life". Proceedings: Biological Sciences. 271 (1545): 1251–1262. doi:10.1098/rspb.2004.2705. PMC 1691724. PMID 15306349.
  22. ^ Mauseth 2012, pp. 514, 517.
  23. ^ a b Cronquist, A.; A. Takhtajan; W. Zimmermann (April 1966). "On the higher taxa of Embryobionta". Taxon. 15 (4): 129–134. doi:10.2307/1217531. JSTOR 1217531.
  24. ^ Chase, Mark W. & Reveal, James L. (October 2009), "A phylogenetic classification of the land plants to accompany APG III", Botanical Journal of the Linnean Society, 161 (2): 122–127, doi:10.1111/j.1095-8339.2009.01002.x
  25. ^ a b c Mauseth, James D. (2012). Botany : An Introduction to Plant Biology (5th ed.). Sudbury, MA: Jones and Bartlett Learning. ISBN 978-1-4496-6580-7. p. 489
  26. ^ Mauseth 2012, p. 540.
  27. ^ Mauseth 2012, p. 542.
  28. ^ Mauseth 2012, p. 543.
  29. ^ Mauseth 2012, p. 509.
  30. ^ Crandall-Stotler, Barbara; Stotler, Raymond E. (2000). "Morphology and classification of the Marchantiophyta". In A. Jonathan Shaw; Bernard Goffinet (eds.). Bryophyte Biology. Cambridge: Cambridge University Press. p. 21. ISBN 978-0-521-66097-6.
  31. ^ Mauseth 2012, p. 535.
  32. ^ Wyatt, T.; Wösten, H.; Dijksterhuis, J. (2013). "Advances in Applied Microbiology Chapter 2 - Fungal Spores for Dispersion in Space and Time". Advances in Applied Microbiology. 85: 43–91. doi:10.1016/B978-0-12-407672-3.00002-2. PMID 23942148.
  33. ^ "Classifications of Fungi | Boundless Biology". courses.lumenlearning.com. Retrieved 5 May 2019.
  34. ^ a b "Archaeal Genetics | Boundless Microbiology". courses.lumenlearning.com.
  35. ^ Holt, Jack R.; Iudica, Carlos A. (1 October 2016). "Blastocladiomycota". Diversity of Life. Susquehanna University. Retrieved 29 December 2016.
  36. ^ Holt, Jack R.; Iudica, Carlos A. (9 January 2014). "Chytridiomycota". Diversity of Life. Susquehanna University. Retrieved 29 December 2016.
  37. ^ "Chytridiomycota | phylum of fungi". Encyclopedia Britannica. Retrieved 5 May 2019.
  38. ^ McConnaughey, M (2014). Physical Chemical Properties of Fungi. doi:10.1016/B978-0-12-801238-3.05231-4. ISBN 9780128012383.
  39. ^ Taylor, Thomas; Krings, Michael; Taylor, Edith (2015). "Fossil Fungi Chapter 4 - Chytridiomycota". Fossil Fungi: 41–67. doi:10.1016/b978-0-12-387731-4.00004-9.
  40. ^ Holt, Jack R.; Iudica, Carlos A. (12 March 2013). "Microsporidia". Diversity of Life. Susquehanna University. Retrieved 29 December 2016.
  41. ^ Holt, Jack R.; Iudica, Carlos A. (23 April 2013). "Neocallimastigomycota". Diversity of Life. Susquehanna University. Retrieved 29 December 2016.
  42. ^ a b "Types of Fungi". BiologyWise. 22 May 2009. Retrieved 5 May 2019.
  43. ^ Wang, Xuewei; Liu, Xingzhong; Groenewald, Johannes Z. (2017). "Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China". Antonie van Leeuwenhoek. 110 (1): 87–103. doi:10.1007/s10482-016-0779-1. PMC 5222902. PMID 27734254.
  44. ^ a b Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. (May 2007). "A higher-level phylogenetic classification of the Fungi" (PDF). Mycological Research. 111 (Pt 5): 509–47. CiteSeerX 10.1.1.626.9582. doi:10.1016/j.mycres.2007.03.004. PMID 17572334. S2CID 4686378. Archived from the original (PDF) on 26 March 2009.
  45. ^ a b Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; et al. (29 April 2015). "A Higher Level Classification of All Living Organisms". PLOS ONE. 10 (6): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.
  46. ^ White, Merlin M.; James, Timothy Y.; O'Donnell, Kerry; et al. (November–December 2006). "Phylogeny of the Zygomycota Based on Nuclear Ribosomal Sequence Data". Mycologia. 98 (6): 872–884. doi:10.1080/15572536.2006.11832617. PMID 17486964. S2CID 218589354.
  47. ^ Hagen, Joel B. (January 2012). "Five Kingdoms, More or Less: Robert Whittaker and the Broad Classification of Organisms". BioScience. 62 (1): 67–74. doi:10.1525/bio.2012.62.1.11.
  48. ^ Blackwell, Will H.; Powell, Martha J. (June 1999). "Reconciling Kingdoms with Codes of Nomenclature: Is It Necessary?". Systematic Biology. 48 (2): 406–412. doi:10.1080/106351599260382. PMID 12066717.
  49. ^ Davis, R. A. (19 March 2012). "Kingdom PROTISTA". College of Mount St. Joseph. Retrieved 28 December 2016.
  50. ^ a b "Taxonomic tree". Catalogue of Life. 23 December 2016. Archived from the original on 1 August 2021. Retrieved 28 December 2016.
  51. ^ a b Cavalier-Smith T (2022). "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma. 259: 487–593. doi:10.1007/s00709-021-01665-7. PMC 9010356.
  52. ^ a b c d e f g h i j k l m n o p Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC 6492006. PMID 30257078.
  53. ^ a b Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, et al. (6 November 2012). "CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms". PLOS Biology. 10 (11): e1001419. doi:10.1371/journal.pbio.1001419. PMC 3491025. PMID 23139639.
  54. ^ a b Votýpka J, Modrý D, Oborník M, Šlapeta J, Lukeš J (2016). "Apicomplexa". In Archibald J, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ, Corliss JO (eds.). Handbook of the Protists. Cham: Springer. doi:10.1007/978-3-319-32669-6_20-1.
  55. ^ Jan Janouškovec; Denis Tikhonenkov; Fabien Burki; Alexis T Howe; Martin Kolísko; Alexander P Mylnikov; Patrick John Keeling (25 February 2015). "Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives". Proceedings of the National Academy of Sciences of the United States of America. 112 (33): 10200–10207. Bibcode:2015PNAS..11210200J. doi:10.1073/PNAS.1423790112. ISSN 0027-8424. PMC 4547307. PMID 25717057. Wikidata Q30662251.
  56. ^ a b c d e f Michael D. Guiry (21 January 2024). "How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing". Journal of Phycology. 00: 1–15. doi:10.1111/JPY.13431. ISSN 0022-3646. PMID 38245909. Wikidata Q124684077.
  57. ^ Foissner, W.; Hawksworth, David, eds. (2009). Protist Diversity and Geographical Distribution. Topics in Biodiversity and Conservation. Vol. 8. Springer Netherlands. p. 111. doi:10.1007/978-90-481-2801-3. ISBN 9789048128006.
  58. ^ a b c T Cavalier-Smith (March 2002). "The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa". International Journal of Systematic and Evolutionary Microbiology. 52 (2): 297–354. doi:10.1099/00207713-52-2-297. ISSN 1466-5026. PMID 11931142. Wikidata Q28212529.
  59. ^ a b c d Cavalier-Smith T (2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European Journal of Protistology. 49 (2): 115–178. doi:10.1016/j.ejop.2012.06.001. PMID 23085100.
  60. ^ a b W Foissner; H Blatterer; I Foissner (1 October 1988). "The hemimastigophora (Hemimastix amphikineta nov. gen., nov. spec.), a new protistan phylum from gondwanian soils". European Journal of Protistology. 23 (4): 361–383. doi:10.1016/S0932-4739(88)80027-0. ISSN 0932-4739. PMID 23195325. Wikidata Q85570914.
  61. ^ Gordon Lax; Yana Eglit; Laura Eme; Erin M Bertrand; Andrew J Roger; Alastair G B Simpson (14 November 2018). "Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes". Nature. 564 (7736): 410–414. doi:10.1038/S41586-018-0708-8. ISSN 1476-4687. PMID 30429611. Wikidata Q58834974.
  62. ^ Shɨshkin, Yegor (2022). "Spironematella terricola comb. n. and Spironematella goodeyi comb. n. (Hemimastigida = Hemimastigea = Hemimastigophora) for Spironema terricola and Spironema goodeyi with diagnoses of the genus and family Spironematellidae amended". Zootaxa. 5128 (2): 295–297. doi:10.11646/zootaxa.5128.2.8. PMID 36101172. S2CID 252220401.
  63. ^ Heiss AA, Warring SD, Lukacs K, Favate J, Yang A, Gyaltshen Y, Filardi C, Simpson AGB, Kim E (December 2020). "Description of Imasa heleensis, gen. nov., sp. nov. (Imasidae, fam. nov.), a Deep-Branching Marine Malawimonad and Possible Key Taxon in Understanding Early Eukaryotic Evolution". Journal of Eukaryotic Microbiology. 68: e12837. doi:10.1111/jeu.12837.
  64. ^ Karpov, Sergey; Mamkaeva, Maria A.; Aleoshin, Vladimir; Nassonova, Elena; Lilje, Osu; Gleason, Frank H. (1 January 2014). "Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia". Frontiers in Microbiology. 5: 112. doi:10.3389/fmicb.2014.00112. PMC 3975115. PMID 24734027.
  65. ^ a b c Denis V. Tikhonenkov, Kirill V. Mikhailov, Ryan M. R. Gawryluk, Artem O. Belyaev, Varsha Mathur, Sergey A. Karpov, Dmitry G. Zagumyonnyi, Anastasia S. Borodina, Kristina I. Prokina, Alexander P. Mylnikov, Vladimir V. Aleoshin & Patrick J. Keeling (7 December 2022). "Microbial predators form a new supergroup of eukaryotes". Nature. 612: 714–719. doi:10.1038/S41586-022-05511-5. ISSN 1476-4687. Wikidata Q115933632.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. ^ Thomas Cavalier-Smith; Ema E-Y Chao (April 2006). "Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista)". Journal of Molecular Evolution. 62 (4): 388–420. doi:10.1007/S00239-004-0353-8. ISSN 0022-2844. PMID 16557340. Wikidata Q28303534.
  67. ^ Thines M (2018). "Oomycetes". Current Biology. 28 (15): R812 – R813. doi:10.1016/j.cub.2018.05.062.
  68. ^ T Cavalier-Smith (1999). "Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree". Journal of Eukaryotic Microbiology. 46 (4): 347–66. doi:10.1111/J.1550-7408.1999.TB04614.X. ISSN 1066-5234. PMID 18092388. Wikidata Q28261633.
  69. ^ a b Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M.A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H.A; Jakobsen, K.S (28 April 2006). "Telonemia, a new protist phylum with affinity to chromist lineages". Proceedings of the Royal Society B: Biological Sciences. 273 (1595): 1833–1842. doi:10.1098/rspb.2006.3515. PMC 1634789. PMID 16790418.
  70. ^ a b Tikhonenkov, Denis V.; Jamy, Mahwash; Borodina, Anastasia S.; Belyaev, Artem O.; Zagumyonnyi, Dmitry G.; Prokina, Kristina I.; Mylnikov, Alexander P.; Burki, Fabien; Karpov, Sergey A. (2022). "On the origin of TSAR: morphology, diversity and phylogeny of Telonemia". Open Biology. 12 (3). The Royal Society. doi:10.1098/rsob.210325. ISSN 2046-2441. PMC 8924772. PMID 35291881.
  71. ^ Corliss, John O. (1984). "The Kingdom Protista and its 45 Phyla". BioSystems. 17 (2): 87–176. doi:10.1016/0303-2647(84)90003-0. PMID 6395918.
  72. ^ a b Euzéby JP, Parte AC. "Names of phyla". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 3 April 2022.
[edit]